Source code for graphframes.lib.aggregate_messages

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Any

from pyspark import SparkContext
from pyspark.sql import Column, DataFrame, SparkSession
from pyspark.sql import functions as sqlfunctions


def _java_api(jsc: SparkContext) -> Any:
    javaClassName = "org.graphframes.GraphFramePythonAPI"
    return (
        jsc._jvm.Thread.currentThread()
        .getContextClassLoader()
        .loadClass(javaClassName)
        .newInstance()
    )


class _ClassProperty:
    """Custom read-only class property descriptor.

    The underlying method should take the class as the sole argument.
    """

    def __init__(self, f: callable) -> None:
        self.f = f
        self.__doc__ = f.__doc__

    def __get__(self, instance: Any, owner: type) -> Any:
        return self.f(owner)


[docs] class AggregateMessages: """Collection of utilities usable with :meth:`graphframes.GraphFrame.aggregateMessages()`.""" @_ClassProperty def src(cls) -> Column: """Reference for source column, used for specifying messages.""" jvm_gf_api = _java_api(SparkContext) return sqlfunctions.col(jvm_gf_api.SRC()) @_ClassProperty def dst(cls) -> Column: """Reference for destination column, used for specifying messages.""" jvm_gf_api = _java_api(SparkContext) return sqlfunctions.col(jvm_gf_api.DST()) @_ClassProperty def edge(cls) -> Column: """Reference for edge column, used for specifying messages.""" jvm_gf_api = _java_api(SparkContext) return sqlfunctions.col(jvm_gf_api.EDGE()) @_ClassProperty def msg(cls) -> Column: """Reference for message column, used for specifying aggregation function.""" jvm_gf_api = _java_api(SparkContext) return sqlfunctions.col(jvm_gf_api.aggregateMessages().MSG_COL_NAME())
[docs] @staticmethod def getCachedDataFrame(df: DataFrame) -> DataFrame: """ Create a new cached copy of a DataFrame. This utility method is useful for iterative DataFrame-based algorithms. See Scala documentation for more details. WARNING: This is NOT the same as `DataFrame.cache()`. The original DataFrame will NOT be cached. """ spark = SparkSession.getActiveSession() jvm_gf_api = _java_api(spark._sc) jdf = jvm_gf_api.aggregateMessages().getCachedDataFrame(df._jdf) return DataFrame(jdf, spark)